DEVOIR DE SYNTHÈSE N°2 O Collection PILOTE Tunis Academy Correction Devoir Version 2

Lun devoir de Synthèse Proposé.

Exercice 1:/ (Exercice 1 (4,5 points))

On dispose, au laboratoire de chimie, d'une solution aqueuse (S_1) d'un monoacide A_1H de concentration molaire C_1 , d'une solution aqueuse (S_2) d'un monoacide A_2H de concentration molaire C_2 .

Afin de déterminer la nature (fort ou faible) de chacun de ces deux acides et comparer leurs forces relatives, on dose séparément, un volume $V_1 = 40 \text{ mL}$ de (S_1) et un volume $V_2 = 40 \text{ mL}$ de (S_2) par une solution aqueuse d'hydroxyde de sodium NaOH (base forte) de concentration molaire $C_B = 5.10^{-2} \text{ mol.L}^{-1}$.

À l'aide d'un pH-mètre, on suit, dans chaque cas l'évolution du pH du milieu réactionnel en fonction du volume $V_{\boldsymbol{B}}$ de la solution d'hydroxyde de sodium ajouté. Les résultats obtenus ont permis de tracer les courbes (C_1) et (C_2) de la figure 1, traduisant l'évolution du pH respectivement des solutions (S_1) et (S_2) , sur lesquelles sont indiqués : - Les points d'équivalences acido-basiques notés E_1 et E_2 . - Au point $A: pH_{\boldsymbol{01}} = 1,70$ et au point $B, pH_{\boldsymbol{02}} = 3,25$.

- $\langle \mathbf{1} \rangle$ En exploitant les courbes de la figure 1 :
 - ${\color{red} a}$ Justifier que l'acide $A_{\bf 1}H$ est fort alors que l'acide $A_{\bf 2}H$ est faible.
 - **b** En déduire la valeur de la concentration C₁.
 - © Déterminer la valeur du pK $_a$ du couple acide-base A_2H / A_2^- .
 - d Donner l'expression du pH2 de la solution de l'acide A2H en fonction de pKa (A2H /A $_2^-$) et C2.
 - e En déduire la valeur de la concentration molaire $C_{\mathbf{2}}$ de la solution aqueuse du monoacide $A_{\mathbf{2}}H.$
- $\langle \mathbf{2} \rangle$ a Écrire l'équation bilan de la réaction au cours du dosage de l'acide $A_{\mathbf{2}}H$.
 - **b** Montrer que cette réaction est pratiquement totale.
- (3) (a) Définir l'équivalence acido-basique.
 - **b** Déterminer graphiquement, en le justifiant, le caractère (acide, neutre ou basique) de chacun des mélanges réactionnels obtenus à l'équivalence au cours des deux dosages.
- (4) (a) Après l'équivalence acido-basique, les courbes (C_1) et (C_2) indiquent que le pH tend vers une valeur limite pour les deux cas de tout volume V_B de la solution aqueuse d'hydroxyde de sodium. Justifier.

- **b** Préciser le rôle d'un indicateur coloré.
- © Indiquer, en le justifiant, l'indicateur coloré le mieux approprié pour chaque dosage.

Indicateur coloré	Hélianthine	BBT	Phénolphtaléine
Zone de virage	3,1 4,4	67,6	8,2 10

Exercice 2:/ (Exercice 2 (2,5 points)

Texte documentaire)

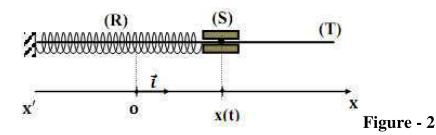
Dans notre corps, quels rôles jouent les acides et les bases?

Les équilibres acido-basiques occupent une place essentielle dans le monde vivant. Le pH de notre sang, par exemple, doit rester dans des limites relativement étroites entre 7 et 7,8. Le rôle de solution tampon est assuré en grande partie par le dioxyde de carbone qui, dissous dans le sang, est en équilibre avec sa base conjuguée, l'ion bicarbonate. L'addition de petites quantités d'acides ou de bases modifie ainsi très peu le pH sanguin. Certaines parties du corps supportent néanmoins une forte acidité. Il s'agit en premier lieu de l'estomac, puisque le suc gastrique, qui contient de l'acide chlorhydrique, a un pH compris entre 2 et 3. La paroi de l'estomac se protège de cette acidité grâce à une épaisse couche de mucus.

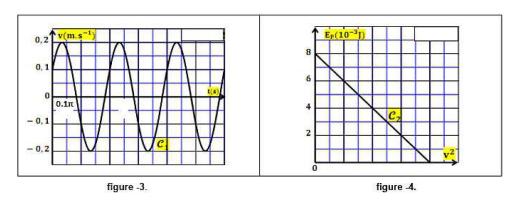
Rappelons aussi que les protéines sont formées d'acides aminés qui, comme leur nom l'indique, contiennent un groupement acide, capable de céder un proton (ion H⁺), et un groupement amine, capable de recevoir un proton. La liaison entre le groupement acide d'un acide aminé et le groupement amine d'un autre acide aminé est appelée liaison peptidique. Elle lie entre eux les acides aminés pour former de longues chaînes protéiques.

> La recherche L'actualité des sciences

- (1) Le dioxyde de carbone qui, dissous dans le sang donne un acide carbonique dont la base conjuguée est l'ion bicarbonate HCO_3^- . Donner la formule chimique de cet acide.
- a Préciser le rôle que peut jouer l'acide carbonique et sa base conjugué dans le $\langle \mathbf{2} \rangle$
 - **b** Le pH du sang est-il sensible à l'addition de petites quantités d'acides ou de
- (3) Expliquer comment le suc gastrique est sans effet sur l'estomac.
- (4) Montrer que l'acide aminé joue le rôle d'un amphotère.



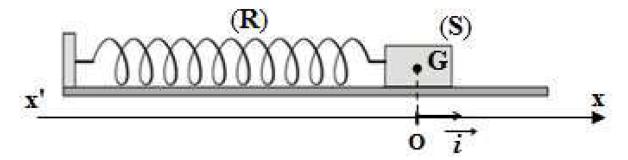
Exercice 3:/ (Exercice 1 (4points))


Un pendule élastique est constitué d'un solide (S) de masse m pouvant coulisser, sans frottement, sur une tige horizontale (T). Le solide (S) est attaché à un ressort (R), à spires non jointives, de masse négligeable et de raideur k. La position du centre d'inertie G de (S) est repérée par son abscisse x(t) sur un axe horizontal x'Ox. L'origine O des abscisses est confondue avec la position de G lorsque (S) est à l'équilibre.

Écarté de sa position d'équilibre jusqu'au point A d'abscisse x_0 puis abandonné à lui-même à l'instant de date t=0s, avec une vitesse initiale V_0 ; le solide (S) se met à osciller de part et d'autre du point O.

À un instant de date t, le système est représenté comme l'indique la figure -2.

A l'aide d'un dispositif approprié, on enregistre la courbe d'évolution de la vitesse v(t) de G et celle de l'énergie potentielle élastique $E_{\mathbf{P}}(v^2)$ du système $\{(R),(S)\}$. On obtient les courbes et respectivement de la figure (3) et de la figure (4).


- $\fbox{\textbf{1}}$ $\fbox{\textbf{a}}$ Établir l'équation différentielle qui régit l'évolution de l'abscisse x(t) du centre d'inertie G.
 - **b** Quelle est alors la nature du mouvement du centre d'inertie G.
- (2) En se référant à chaque fois à la figure convenable :
 - $\mbox{\fontfaire}$ Déterminer l'expression de la vitesse instantanée v(t).
 - f b Déduire l'abscisse x(t) du centre d'inertie G.
 - © Déterminer la date du 2^{ème} passage de G par la position d'équilibre.
 - d Déterminer les valeurs de k et de m.

Exercice 4:/ (Exercice 2 (4points))

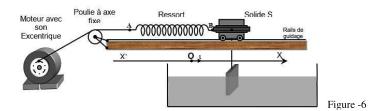
Un pendule élastique est formé d'un ressort (R) à spires non jointives, de masse négligeable et de constante de raideur K. L'une des extrémités du ressort est fixe et l'autre est soudée à un solide (S) supposé ponctuel de centre d'inertie G et de masse m. Le solide peut se déplacer suivant l'axe horizontal (x'x) comme l'indique la figure ci-contre.

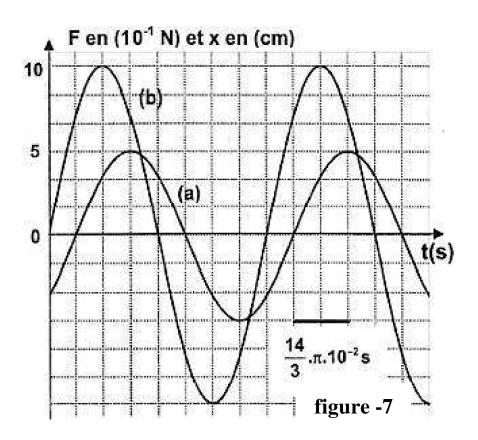
La position de (S) est repérée par son abscisse x dans le repère $(0, \vec{i})$ avec O position d'équilibre de (S). Le solide (S) est écarté de sa position d'équilibre d'une distance x₀ (x₀ (0), puis abandonné à lui-même sans vitesse initiale à t = 0 s.

Au cours de son mouvement, le solide est soumis à des forces de frottement visqueux de résultantes $\vec{f} = -h \cdot V \vec{i}$ avec h est le coefficient de frottement et V la valeur algébrique de la vitesse de G.

- (1) Établir l'équation différentielle qui régit les variations de l'élongation x de G au cours du temps.
- (2) Donner l'expression de l'énergie mécanique E de ce pendule et Montrer qu'elle diminue au cours du temps.
- (3) Un système d'acquisition de données permet d'enregistrer les variations de l'élongation x de G, des énergies cinétique $\mathbf{E}_{m{C}}$ et potentielle élastique $\mathbf{E}_{m{pe}}$ au cours du temps. On obtient les oscillogrammes de la figure-5 ci-contre.

- (a) Identifier en justifiant la réponse, chacun des oscillogrammes de la figure-5.
- **b** Nommer le régime oscillatoire observé.
- © Déterminer la valeur de la pseudo-période T et celle de K.
- d Calculer la perte d'énergie mécanique entre les instants $t_0 = 0$ s et $t_1 = 0.52$ s.





S Exercice 5:/ (Exercice 3 (5points))

Un oscillateur mécanique est constitué d'un ressort (R), à spires non jointives, de masse supposée négligeable et de raideur $k = 25 \text{ N.m}^{-1}$, lié à un solide (S) de masse m qui peut se déplacer sur un plan horizontal. A l'équilibre, le centre d'inertie G du solide coïncide avec l'origine O d'un repère (O, \vec{i}). La position du solide à un instant t donné est repérée par son abscisse x(t) dans ce repère (figure 6). Au cours de son mouvement, le solide (S) est soumis à une force de frottement visqueux $\vec{f} = -h \cdot V \vec{i}$ où h est une constante positive et V est la valeur algébrique de la vitesse instantanée de G. Un dispositif approprié (moteur) permet d'exercer sur (S) une force excitatrice $\vec{F}(t) = F_m \sin(2\pi N t) \cdot \vec{i}$, d'amplitude F_m constante et de fréquence N réglable, de façon que $x(t) = X_m \sin(2\pi N t + \varphi_x)$; où X_m est l'amplitude et φ_x est la phase initiale de x(t).

 \bigcirc Une étude expérimentale a permis de tracer les courbes (a) et (b), données par la figure 7, dont l'une représente l'évolution de l'élongation x(t) et l'autre celle de F(t).

- **a** Justifier que la courbe (a) correspond à x(t).
- **b** Déterminer les valeurs de X_m , F_m et N.
- © Déterminer le déphasage $\Delta \varphi = \varphi_F \varphi_x$; où φ_F est la phase initiale de F(t).

- (2) Établir l'équation différentielle du mouvement du centre d'inertie G du solide (S).
- (3) a Faire la construction de Fresnel associée à l'équation différentielle précédente.
 - **(b)** En déduire les valeurs de la constante h et de la masse m.
 - © Montrer que :

$$X_m = rac{F_m}{\sqrt{(2\pi {
m N}h)^2 + (k - 4\pi^2 {
m N}^2 m)^2}}$$

- $\boxed{4}$ Pour une valeur N_1 de la fréquence N_1 le déphasage est : $\Delta \varphi = \varphi_F \varphi_x = \frac{\pi}{2}$ rad.
 - (a) En se référant à une analogie formelle électrique-mécanique, montrer que l'oscillateur est en état de résonance de vitesse.
 - **b** En déduire la valeur de N₁.
- (5) (a) Montrer que l'amplitude X_m de l'oscillateur est maximale pour une valeur de la fréquence :

$$N_r = \sqrt{N_0^2 - rac{h^2}{8\pi^2 m^2}}$$

avec N_0 étant la fréquence propre

- $\textcircled{\textbf{b}}$ De quel type de résonance s'agit-il à cette fréquence $\mathbf{N}_{\boldsymbol{r}}$
- \bigcirc La masse m ne peut rester solidaire du ressort que pour une valeur de la tension du ressort ne dépassant pas 1,5 N. On fait diminuer la valeur de h jusqu'à atteindre la valeur h₂ = 0,8 Kg.s⁻¹. La résonance d'élongation est obtenue pour une fréquence N₂ = 2,35 Hz.
 - a Déterminer la valeur de l'allongement maximal X_{2m} du ressort pour $N=N_2$.
 - **b** Préciser, en le justifiant, si le solide reste attaché au ressort, dans ce cas.

